Split top: a maternal cathepsin B that regulates dorsoventral patterning and morphogenesis.

نویسندگان

  • Yvette G Langdon
  • Ricardo Fuentes
  • Hong Zhang
  • Elliott W Abrams
  • Florence L Marlow
  • Mary C Mullins
چکیده

The vertebrate embryonic dorsoventral axis is established and patterned by Wnt and bone morphogenetic protein (BMP) signaling pathways, respectively. Whereas Wnt signaling establishes the dorsal side of the embryo and induces the dorsal organizer, a BMP signaling gradient patterns tissues along the dorsoventral axis. Early Wnt signaling is provided maternally, whereas BMP ligand expression in the zebrafish is zygotic, but regulated by maternal factors. Concomitant with BMP activity patterning dorsoventral axial tissues, the embryo also undergoes dramatic morphogenetic processes, including the cell movements of gastrulation, epiboly and dorsal convergence. Although the zygotic regulation of these cell migration processes is increasingly understood, far less is known of the maternal regulators of these processes. Similarly, the maternal regulation of dorsoventral patterning, and in particular the maternal control of ventral tissue specification, is poorly understood. We identified split top, a recessive maternal-effect zebrafish mutant that disrupts embryonic patterning upstream of endogenous BMP signaling. Embryos from split top mutant females exhibit a dorsalized embryonic axis, which can be rescued by BMP misexpression or by derepressing endogenous BMP signaling. In addition to dorsoventral patterning defects, split top mutants display morphogenesis defects that are both BMP dependent and independent. These morphogenesis defects include incomplete dorsal convergence, delayed epiboly progression and an early lysis phenotype during gastrula stages. The latter two morphogenesis defects are associated with disruption of the actin and microtubule cytoskeleton within the yolk cell and defects in the outer enveloping cell layer, which are both known mediators of epiboly movements. Through chromosomal mapping and RNA sequencing analysis, we identified the lysosomal endopeptidase cathepsin Ba (ctsba) as the gene deficient in split top embryos. Our results identify a novel role for Ctsba in morphogenesis and expand our understanding of the maternal regulation of dorsoventral patterning.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential activity of Ras1 during patterning of the Drosophila dorsoventral axis.

In Drosophila, the Ras1 gene is required downstream of receptor tyrosine kinases for correct eye development, embryonic patterning, wing vein formation, and border cell migration. Here we characterize a P-element allele of Ras1, Ras1(5703), that affects viability, eye morphogenesis, and early and late stages of oogenesis. Flies transheterozgyous for Ras1(5703) and existing EMS-induced Ras1 alle...

متن کامل

Lzts2 regulates embryonic cell movements and dorsoventral patterning through interaction with and export of nuclear β-catenin in zebrafish.

Leucine zipper tumor suppressor 2 (Lzts2) functions in the development and progression of various tumors, but its activities in vertebrate embryogenesis remain unclear. Here, we demonstrate that lzts2 transcripts are of maternal origin in zebrafish embryos. Activation of BMP signaling up-regulates zygotic expression of lzts2, whereas canonical Wnt signaling acts upstream of BMP signaling to inh...

متن کامل

Eph Regulates Dorsoventral Asymmetry of the Notochord Plate and Convergent Extension-Mediated Notochord Formation

BACKGROUND The notochord is a signaling center required for the patterning of the vertebrate embryonic midline, however, the molecular and cellular mechanisms involved in the formation of this essential embryonic tissue remain unclear. The urochordate Ciona intestinalis develops a simple notochord from 40 specific postmitotic mesodermal cells. The precursors intercalate mediolaterally and estab...

متن کامل

Specification and morphogenesis of the zebrafish larval head skeleton.

Forward genetic analyses can reveal important developmental regulatory genes and how they function to pattern morphology. This is because a mutated gene can produce a novel, sometimes beautiful, phenotype that, like the normal phenotype, immediately seems worth understanding. Generally the loss-of-function mutant phenotype is simplified from the wild-type one, and often the nature of the patter...

متن کامل

Pax6 modulates the dorsoventral patterning of the mammalian telencephalon.

The Pax6 gene encodes a transcription factor with a restricted expression in the ventricular zone of the pallium and subpallium. We tested whether the function of Pax6 is necessary for the correct patterning and morphogenesis of the vertebrate telencephalon. Homozygous embryos of the Pax6/Small eye mutant lack functional PAX6 protein because of a point mutation of the gene. In the mutant Small ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 143 6  شماره 

صفحات  -

تاریخ انتشار 2016